Real zeros of Dedekind zeta functions of real quadratic fields

نویسنده

  • Kok Seng Chua
چکیده

Let χ be a primitive, real and even Dirichlet character with conductor q, and let s be a positive real number. An old result of H. Davenport is that the cycle sums Sν(s, χ) = ∑(ν+1)q−1 n=νq+1 χ(n) ns , ν = 0, 1, 2, . . . , are all positive at s = 1, and this has the immediate important consequence of the positivity of L(1, χ). We extend Davenport’s idea to show that in fact for ν ≥ 1, Sν(s, χ) > 0 for all s with 1/2 ≤ s ≤ 1 so that one can deduce the positivity of L(s, χ) by the nonnegativity of a finite sum ∑t ν=0 Sν(s, χ) for any t ≥ 0. A simple algorithm then allows us to prove numerically that L(s, χ) has no positive real zero for a conductor q up to 200,000, extending the previous record of 986 due to Rosser more than 50 years ago. We also derive various estimates explicit in q of the Sν(s, χ) as well as the shifted cycle sums Tν(s, χ) := ∑(ν+1)q+ q/2 n=νq+ q/2 +1 χ(n) ns considered previously by Leu and Li for s = 1. These explicit estimates are all rather tight and may have independent interests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Values of Zeta Functions at Negative Integers, Dedekind Sums and Toric Geometry

In the present paper, we study relations among special values of zeta functions of real quadratic fields, properties of generalized Dedekind sums and Todd classes of toric varieties. The main theme of the paper is the use of toric geometry to explain in a conceptual way properties of the values of zeta functions and Dedekind sums, as well as to provide explicit computations. Both toric varietie...

متن کامل

Elliptic units for real quadratic fields

1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...

متن کامل

Zeros of Dedekind Zeta Functions and Holomorphy of Artin L-functions

For any Galois extension of number fields K/k, the object of this note is to show that if the quotient ζK(s)/ζk(s) of the Dedekind zeta functions has a zero of order at most max{2, p2 − 2} at s0 6= 1, then every Artin L-function for Gal(K/k) is holomorphic at s0, where p2 is the second smallest prime divisor of the degree of K/k. This result gives a refinement of the work of Foote and V. K. Murty.

متن کامل

On a Two-Variable Zeta Function for Number Fields

This paper studies a two-variable zeta function ZK(w, s) attached to an algebraic number field K, introduced by van der Geer and Schoof [11], which is based on an analogue of the RiemannRoch theorem for number fields using Arakelov divisors. When w = 1 this function becomes the completed Dedekind zeta function ζ̂K(s) of the field K. The function is an meromorphic function of two complex variable...

متن کامل

EVALUATION OF THE DEDEKIND ZETA FUNCTIONS AT s = −1 OF THE SIMPLEST QUARTIC FIELDS

The simplest quartic field was introduced by M. Gras and studied by A. J. Lazarus. In this paper, we will evaluate the values of the Dedekind zeta functions at s = −1 of the simplest quartic fields. We first introduce Siegel’s formula for the values of the Dedekind zeta function of a totally real number field at negative odd integers, and will apply Siegel’s formula to the simplest quartic fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005